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This paper describes packages for symbolic calculations in quantum groups,
noncommutative differential geometry, and multivalued logic. The package for quantum
groups and the program for logic are written in Mathematica 3.0 and/or 4.0. As an
example, some results in the logic obtained using these packages are presented.

1. INTRODUCTION

Programs like Mathematica and Maple help with symbolic calculations.
Commercial programs cover the standard mathematics widely used in science,
engineering, medicine, or administration, but not new and developing
branches of mathematics like quantum groups (Woronowicz, 1989), or braided
logic (Chávez Rodrı́guez et al., 1999, 2000).

It is difficult to overestimate the utility of symbolic programs for doing
extensive calculations in quantum groups, noncommutative differential geome-
try, and braided logic. Although there are some programs for symbolic calcula-
tions in these areas, they are oriented toward particular calculations, and are
not universal tools. The present package is designed to answer these needs.

2. PACKAGE FOR QUANTUM GROUPS AND
NONCOMMUTATIVE ALGEBRAS

Micho –Durd-evich is a coauthor of the computer package presented
below. It is assumed the package will be shared with other users, which puts
certain demands on its design:
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• There should be compatibility with the current version of Mathemat-
ica to allow a user to enjoy all the support provided by Mathematica and by
other packages written for it. We avoided repetition of structures provided
by other complementary packages in Mathematica, like Gröbner bases, differ-
ential one-forms in commutative differential geometry of one-sided mod-
ules, etc.

• Newly introduced objects should follow the convention of definitions
in Mathematica. They also have the same kind of help as other objects in
Mathematica, called by “?”.

• Design and programming of the package should be easy to follow
for a mathematician, not only for a programmer. The program is built from
sets of definitions and sets of local rules. Loops, subprograms, and local
variables are completely avoided in the main body of the program. They
support only the graphical interface of the program (colorful menu, indices
in Sweedler notation). This interface is optional; some users would probably
welcome these additions, others would rather skip them and use only the
core of the program, which is transparent to follow, and computes faster.

• The program follows the notation used in the literature (Woronowicz,
1987, 1989; –Durd-evich, 1995, 1996, 1997, 1999, 2000a, b). Choices were
unavoidable when two or more conventions coexist in the literature. Following
the notation from the literature resulted in overloading some symbols like d,
P. They have different meanings in different contexts. We deliberately made
this choice, simultaneously trying to avoid any ambiguity in the program.
Such cases are documented in the Help.

• The program runs on any computer with Mathematica 3.0 or higher.
Efforts were made to keep the program fast and low in memory demand in
order to be useful for small personal computers.

• The program is written on two levels: (a) to be used for a wide range
of predefined noncommutative calculations, and also to use special libraries
like for SqU(2), quantum torus, quantum Euclidean space, etc.; and (b) to
allow the user to define and check his or her own noncommutative objects,
like new algebras, define the relations inside it and check the consistency,
or to expand the program for whatever other reason.

Keeping the structure based on definitions and sets of rules, we had in
mind mainly the second type of user who can follow this structure in writing
his or her sets of definitions and relations.

• For users who do not attempt to extend the program, but simply use
the existing part, we recommend a menu which makes it possible to use the
program without going through its structure.

• The program is not designed (1) to run under Maple, (2) to use a
lower version of Mathematica than 3.0, (3) to stop calculations when a user
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wants to apply an operation which is mathematically not allowed; a random
answer may appear in such a case; (4) to perform nonalgorithmizable opera-
tions; it is a classical computer program; and (5) to simplify some expressions
automatically; it needs one or two steps done by hand before further executing
automatic simplifications. Usually this means removing superficial sets of
parentheses. Implementing special rules for any combination of superficial
parentheses which may potentially occur would extend the program tremen-
dously, compromising both clarity and performance.

2.1. The Content of the Program

All symbols not declared as noncommutative are treated as commutative.
Any symbol can be declared to be noncommutative either by putting it in
parentheses or by making it equal to a symbol in parentheses. Three kinds of
noncommutative multiplications with appropriate power operations are defined,
including rules for interaction with other mathematical operations (distributivity
of multiplications with respect to summation; putting a commutative coefficient
in front of an expression; associativity of multiplications). Each multiplication
basically had its own power operator, but tests showed that it was more conve-
nient to overload one power operator; there is usually no ambiguity in which
multiplication was shortened to the power, and which set of rules to call in the
case of expanding the power. The version with different power operators for
different multiplications is included in the package.

The multiplications are as follows:

? Multiplication of noncommutative elements
** Redefined to be a multiplication of matrices built of noncommuta-

tive elements
^ Tensor operation for tensors built of noncommutative elements

Differentiation fulfilling Leibniz’ rule and working with these noncom-
mutative multiplications is defined. For commutative parts of expressions, it
behaves as usual differentiation. Appropriate sets of transformation rules for
expanding and for factorization of expressions are provided. Typical quantum
group objects are provided: comultiplication, counit, identity operation, anti-
pode, multiplication in an algebra, star operation in an algebra, etc. Libraries
of rules for the most typical mathematical noncommutative structures, SqU(2),
Euclidean plane, noncommutative torus, are included.

Matrices and multi-index objects built of noncommutative elements can
be used; appropriate definitions are provided. Noncommutative differential
one-forms (from bimodule) and appropriate sets of relations are defined. The
projection operation is predefined.

The package is designed for interactive calculations; a user has to decide
which part of the sequence of application of sets of rules is to be applied
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and which form of presentation of the answer is desired. Our goal was not
to produce a program which calculates things by itself—this would narrow
the possible applications—but rather to expand the possibilities of symbolic
programming in Mathematica, to include noncommutative objects and treat
specific algebraic operations like a star in an algebra, comultiplication, etc.,
on an equal basis with standard, commutative ones.

2.2. Sweedler Notation

Implementation of Sweedler notation in Mathematica is quite challeng-
ing because changes in one place of the expression cause changes in numera-
tion in other parts of expression which are not involved in the particular
operation. We had to compromise, i.e., there is a program for calculation in
Sweedler notation or, to be precise, two twin programs: one for users who
prefer upper Sweedler notation, and the other, which is its exact counterpart,
invented for those who prefer original lower Sweedler notation. The program
for notation has to have some elements insuring proper graphical representa-
tion of the expression, a tool to check if a number in any part of the expression
which was not involved in particular operation was appropriately changed,
and so on. We ended up with a program which works, but we had to give
up the demand of building everything from definitions and local rules in an
easy-to-follow way. This is the only part in the whole package whose manner
of working we do not explain—it is not beautiful, it is just robust enough
to work. This part of the program code is also available for the user, but is
not as easy to modify or expand as the main program.

There is rising interest in exploring all (braided) bigebra structures for
a fixed given well-known algebra, like Clifford algebra (–Durd-evich and Ozie-
wicz, 1996; Oziewicz, 1997; –Durd-evich, 2000). Another related important
problem is to determine all coproducts which allow an antipode to exist for
the given product with unit. These problems lead us directly into the braided
categories with all problems related to explicit solutions of the Yang–Baxter
equation. The main obstacle in this area of the finite-dimensional linear algebra
is the fact that all logical calculations widely used in braided geometry are
enormously time-consuming. On the other hand, they are fully algorithmizable.
This is also an ideal area for symbolic computations on a computer.

3. LOGIC

There is interest in exploring braided logic and related problems (Chávez
Rodrı́guez et al., 1999, 2000). The problem could have applications in quan-
tum computers which allow for multivalued logic. The main obstacle in the
area of braided logic is the fact that all logical calculations widely used in
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logic are enormously time-consuming. On the other hand, they are fully
algorithmizable. This is an ideal area for symbolic computations on a
computer.

There is an encouraging fact that the majority of typical grafted opera-
tions in universal algebra and logic (as in the example in the next subsection)
can be performed in Mathematica simply as a nested operation of calling a
list element. From the programming point of view, this is one of the most
efficient techniques in symbolic programming. This program does not deal
with the Artin relation since a program for computing this relation already
exists (Chávez Rodrı́guez and López Gómez, 2000). Grafted operations are
important in logic. The program is rather a system of rules and operations,
which are computer counterparts of typical nodes in logical diagrams.

The program is written in a form that makes it possible to do calculations
in multivalued logic. To be consistent in notation, for multivalued logic, the
program denotes values by natural numbers for any logic: 2-valued logic: 1
and 2; n-valued logic: 1, . . . , n.

Every binary operation is given in terms of a matrix. The way to generate
a table built of matrices of all binary operations defined in the n-valued logic
in Mathematica is

An 5 Table[{{i1, . . . , in}, {in11, . . . , i2n}, . . . , {inn2n11, . . . , inn}},

{i1, n}, . . . , {in , n}] (1)

where dots means that some elements of the code were skipped. In Mathemat-
ica, they have to be written in the code explicitly. Each binary operation of
the n-valued logic is described by an n 3 n matrix. Each matrix defines the
outcome of one logical binary operation. Here is how we read the matrix:
the columns are numbered by the logical value of the first element, the
rows are numbered by the logical value of the second element, and at the
column–row intersection, the program writes the logical output of particular
binary operation. The n-valued logic has nnn binary operations, i.e., 24 5 16
for 2-valued logic, 39 5 19,683 for 3-valued logic, 416 5 4,294,967,296 for
4-valued logic.

The matrices of the 16 logical binary operations for 2-valued logic are
numbered in a (1)-way as follows:

1) 5
t f

t t t
f t t6 2) 5

t f
t t t
f t f6 3) 5

t f
t t t
f f t6 4) 5

t f
t t t
f f f6

5) 5
t f

t t f
f t t6 6) 5

t f
t t f
f t f6 7) 5

t f
t t f
f f t6 8) 5

t f
t t f
f f f6
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9) 5
t f

t f t
f t t6 10) 5

t f
t f t
f t f6 11) 5

t f
t f t
f f t6 12) 5

t f
t f t
f f f6

13) 5
t f

t f f
f t t6 14) 5

t f
t f f
f t f6 15) 5

t f
t f f
f f t6 16) 5

t f
t f f
f f f6

Compare with the tables in Chávez Rodrı́guez and López Gómez, (2000),
where binary operations are classified with respect to essentiality and
associativity.

Matrices are available from the author of all binary operations An for
3-valued logics. The diagrams for 4- and higher valued logics, generated by
the same program, should be used as a step in computer calculations when
needed. We would rather not report all of them in any explicit printed versions
due to the size of the table An , but it is still relatively easy to obtain from
the program for An what is the matrix form of a particular binary operation
number k (k # n).

The table An defines uniquely the order of binary operations in an n-
valued logic. We will assume this order further in the paper, and refer to a
binary operation by its number in the appropriate An table. Unfortunately,
this order does not take into account the essentiality of the binary operation,
for example, the constant binary operations are not grouped together in
one bloc.

Higher type operations exist also, e.g., ternary operations and generally
n-ary operations. Each n-ary operation in m-valued logic is represented by
an n-index matrix m 3 m 3 . . . 3 m. The set of all such operations can be
calculated and used analogously to the ones discussed for binary operations.
All the operations can be done in exactly the same way as for binary opera-
tions, with one obvious change—there would be correspondingly more inter-
nal indices for summation. The design of the package is such that these
operations can be easily and consistently updated. What stops us from imple-
menting this part explicitly in this version of the package is the high demand
for computer power. One can easily modify the program to improve perfor-
mance many times. But even 100 times is still not a solution when dealing
with contemporary computers.

3.1. Example: Binary Operations on Binary Operations

Let j [ { ji.i 5 1, . . . , nnn} be a set of all binary operations on n-
element carriers. In this example, we are interested in the binary operations
on this set j, {B: j 3 j → j}. Each binary operation B on j can be given
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by a grafted graph. As in Chávez Rodrı́gez and López Gómez (2000),
graphs must be read from the top (inputs) to the bottom (output). All the
combinations of logical binary operations from a set j such that we have
two inputs (in our convention on the top) and one output (on the bottom)
are equivalent to one of the elementary operations from a set j for which
the matrix is an element of the table An , no matter how complicated the
graph (diagram) is.

Let us consider, as an example, the following grafted binary operation
B( j1, j2) P j, where j1 and j2 as variables run through the whole set j of all
binary operations:

The not labeled first node means the diagonal duplication a ° (a, a).
The answer will be returned in the form of matrices B, where value of the
element B[j1, j2] P j is the number of operations to which such a diagram
with particular operations j1 and j2 is equal. In our example, the logical
operations are numbered as in table An from (1). Alternative numbering,
related to specific fibration of the set j, could be more appropriate; however,
this is not considered here (Chávez Rodrı́guez and López Gómez, 2000).

The program for the above grafted graph B is

r 5 Table[rr, {i, n}, { j, n}] (2)

n is the valency of the logic; (2) is the definition of an n 3 n matrix named
r P j; i, j, k, m are summation indices; An is a three-index table built
of matrices of all the operations in the n-valued logic; and b[., .] is an
auxiliary function,

Do[{Do[r[[ i, j ]] 5 A[[l, A[[ k, i, j ]], j ]], {i, n}, { j, n}]

If [r 5 A[[m]], b[k, l] 5 m]}, {k, n}, {l, n}, {m, n}] (3)

This double loop calls appropriate elements of the operation matrices and,
in the “if” operation, reads the operation to which the result is equivalent.

The next operation is for representation of the results in the form of the
answer matrix B,
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B 5 Table[b[ i, j ], {i, n}, { j, n}] (4)

Table B (the answer matrix) of solutions for the above example of a grafted
3-node graph B( j1, j2) P j for the 2-valued logic in our convention (1) is
as follows:

1 1 1 1 6 6 6 6 11 11 11 11 16 16 16 16
1 2 1 2 5 6 5 6 11 12 11 12 15 16 15 16
1 1 3 3 6 6 8 8 9 9 11 11 14 14 16 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 5 1 5 2 6 2 6 11 15 11 15 12 16 12 16
1 6 1 6 1 6 1 6 11 16 11 16 11 16 11 16
1 5 3 7 2 6 4 8 9 13 11 15 10 14 12 16
1 6 3 8 1 6 3 8 9 14 11 16 9 14 11 16

B 5 1 1 9 9 6 6 14 14 3 3 11 11 8 8 16 16
1 2 9 10 5 6 13 14 3 4 11 12 7 8 15 16
1 1 11 11 6 6 16 16 1 1 11 11 6 6 16 16
1 2 11 12 5 6 15 16 1 2 11 12 5 6 15 16
1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
1 6 9 14 1 6 9 14 3 8 11 16 3 8 11 16
1 5 11 15 2 6 12 16 1 5 11 15 2 6 12 16
1 6 11 16 1 6 11 16 1 6 11 16 1 6 11 16

An analogous answer matrix for the 3-valued logic of the size 19,683
3 19,683 is also computed.

Any other binary grafted graph j 3 j → j is represented in the program
in a very similar way. The core of the calculations is to represent a diagram
as a nested calling of elements from the table An with appropriate summation
indices. The matrix r plays an auxiliary role in finding to which operation
the diagram is equivalent. The last line of the code (4) is simply for returning
the results in the form of a matrix when it is convenient.

In the case of more complicated grafted graphs with 3 and more nodes
from j, for example, in the case of the ternary grafted graph j 3 j 3 j → j,
to which any operation can be applied, the answer is presented not as a
matrix, but as a list of lists: { j1, j2, . . . jk , answer}, where first k places refer
to operations on k nodes of the diagrams and the last place returns the
statement to which binary operation such a graph is equal.

A small change in the program allows for returning the answer not as
a diagram random number, but as the logical values on the exits as the
functions of the logical values on enters and of operations performed on
every node. This kind of output is usually long and difficult to follow, but
sometimes unavoidable, for example, in the case of complicated graphs with
many entrances and more than one exit, like these entering into the Artin
braid relation (Chávez Rodrı́guez and López Gómez, 2000).

The program is written in such a way that as many operations as possible
in Mathematica are executed just by calling an appropriate element of a list,
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which makes the program relatively fast and low in memory requirements.
The version of the program for the 2-valued logic runs on any computer with
Mathematica and computation is so fast that it usually can be performed in
a dialogue mode. The version for the 3-valued logic has also been run by
the author on a home PC, but the computation time takes weeks even for
relatively simple diagrams.
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